A Quick Guide to Esterel
Version 5.10, release 1.1

Gérard Berry
Ecole des Mines and INRIA
Sophia-Antipolis
06560 Valbonne
berry@cma.inria.fr

April 18, 1997

This document is a part of the ESTEREL Primer [4] that can be used as
a stand-alone quick guide to the language constructs, syntax, and seman-
tics. We assume that the reader is already familiar with the foundations of
ESTEREL: reactive systems, signals, events, instantaneous broadcasting and
control transmission, etc. These are abundantly described in the references
[4,7,1, 2,9, 8]. For fine points, please refer to the Esterel Reference Manual
[5] and Constructive Semantics definition |3].

WARNING: The language covered is Version 5.10 to come. The
following features are new to 5.10 and are not supported in the
current versions 5.0x:

The float primitive type, Section 3.

The explicit definition of constants, Section 3.

The use of +, *, and, or in combined signal declarations, Section 4.

The pause statement, Section 7.1, which must be written “await tick”.

The positive repeat statement, Section 7.4.

The renamings of functions by operators in run submodule inclusion,
Section 7.15.

Contents

1

2

Lexical Aspects 4
Modules 4
Data 6
3.1 Typesand Operators 6
3.2 Constants 6
3.3 Functions 7
3.4 Procedures 7
3.5 Taskso 7
Signals and Sensors 8
4.1 Interface Signal Declarations 8
4.2 Single and Combined Valued Signals 9
4.3 Sensors e 9
4.4 Input Relations o oo 10
4.5 Local Signal Declaration 10
Variables 11
Expressions 11
6.1 Data Expressions 0L 12
6.2 Signal Expressions L. 12
6.3 Delay Expressionso 12
Statements 13
7.1 Basic Control Statements 14
7.2 Assignment and Procedure Call 14
7.3 Signal Emission o oo oo 15
74 Sequencingl 16
7.5 Looping 16
7.6 Repeat Loops 0. 17
7.7 The present Signal Test 18
7.8 Theif Data Test 19
7.9 The await Statement00 19
7.10 The abort Statements 20
7.11 Temporal Loops o 22
7.12 The suspend Statement 23

8

9

7.13 Traps . . . o L o
7.13.1 Nested Traps
7.13.2 Trap Handlers
7.13.3 Concurrent Traps
7.13.4 Valued Traps

7.14 The Parallel Statement

7.15 The run Module Instantiation Statement

7.16 The exec Task Execution Statement
7.16.1 The exec Statement and the Return Signals
7.16.2 External Task Execution
7.16.3 Uniqueness of Return Signals
7.16.4 Abortion of exec Statements
7.16.5 Suspension of exec Statements
7.16.6 Testing for the ReturnSignal
7.16.7 Multipleexec oo
7.16.8 Immediate Restart of an exec Statement

Reincarnation

Constructive Causality

9.1 Non-Reactive and Non-Deterministic Programs
9.1.1 Signal Dependency Cycles
9.1.2 AcyclicPrograms L.

9.2 Logical Correctness i

9.3 Constructiveness
9.3.1 Constructiveness and Preemption
9.3.2 Constructiveness of Signal Expressions
9.3.3 Constructiveness for Valued Signals

9.4 Constructiveness vs. Acyclicity

Appendix A: Old Syntax

35

36
36
37
38
39
40
42
43
43
44

49

1 Lexical Aspects
Lexical aspects are classical:

o Identifiers are sequences of letters, digits, and the underline character
‘_’ starting with a letter.

e Integer and floating-point numerical constants are as in C, e.g, 123,
12.3, .123E2, or 1.23E1.

e Strings are written between double quotes, e.g., "a string", with dou-
bled double quotes as in "a "" double quote".

e Keywords are reserved (the list is given in the Esterel Reference Manual
[5]). Many constructs are bracketed, like “present ... end present”.
For such constructs, repeating the initial keyword is optional; one can
also write “present ... end”.

e Simple comments start with ‘4’ and end at end-of-line. Multiple-line
comments start with ‘%4{’ and end with ‘}%’.

2 Modules

An ESTEREL program is defined by its main module, which can use sub-
modules called by the run statement. A module has a name, an interface
declaration part, and a body, which is an executable statement:

module M :
interface declaration
statement
end module

The ESTEREL V5 compiler translates a module into a conventional circuit
or program written in a host language that is chosen by the user.
The interface declaration contains two kinds of objects:

e Data objects, which are declared abstractly in ESTEREL. Their actual
value is supposed to be given in the host language and linked to the
ESTEREL compiled code in a way that depends on the compiler and
target language.

e Signals and sensors, which are the primary objects the program deals
with.

The data and signal declarations can be mixed in an arbitrary way, provided
that any item is declared before being used. The scope of interface objects
is the whole module. Here are complete examples of the module interface,
the components of which will be explained below:

module WATCH :

input UL, UR, LL, LR; % the four watch buttons
relation UL # UR # LL # LR; % they are incompatible

input S, HS; % second and 1/100 second
relation S => HS; % no S without an HS
type Time;

constant Noon : Time;

function CompareTime (Time, Time) : boolean;
procedure IncrementTime (Time) (integer);
output CurrentTime := Noon : Time;

type Beep;

constant WatchBeep : Beep, AlarmBeep : Beep;
function CombineBeeps (Beep, Beep) : Beep;
output Beeper : combine Beep with CombineBeeps;

module ROBOT:
type Coord, Rectangle;

function MakeRectangle (Coord, Coord) : Rectangle;
function InRectangle (Coord, Rectangle) : boolean;
procedure TranslateAndRotate (Rectangle) (Coord, integer);

task MoveRobotInsideRectangle (Coord) (Rectangle);
return RobotInRectangle;

module MISC :

constant WordLength = 16 : integer;

sensor Temperature : float;

output YesVotes := 0 : combine integer with +;

3 Data

Data objects are divided between primitive and user-defined objects. Since
data handling is not a primary concern in control-dominated reactive pro-
gramming, we kept the data definition facilities minimal, heavily relying on
the host language capabilities. All data objects are global to the program.
Fach data object used within a module must be declared in that module.
For a multi-module program, an data object declared in several submodules
must be identically declared in all of them, see Section 7.15.

3.1 Types and Operators

There are only four primitive types in ESTEREL: boolean, integer, float,
and string. The Boolean constants are true and false. The numerical
and string constants were described in Section 1.

The operations are the usual ones. Equality is written = and difference
is written <> for all types. The boolean type is equipped with and, or, and
not, and the operations +, -, *, /, <, <=, >, and >= are available for integer
and float. There is no implicit type conversion. In particular, the user
must call explicitly declared external functions to convert integers to floats
and conversely.

The user can define his own types by declaring their names. For Es-
TEREL, a user type is a completely abstract object. Its actual definition will
be given only in the host language. Here are the type declarations of the
above module examples:

type Time;
type Beep;
type Coord, Rectangle;

3.2 Constants

Constants of any type can be declared as follows:
constant Noon : Time;

constant WatchBeep : Beep, AlarmBeep : Beep;
constant WordLength = 16;

There are two ways to declare a constant. In the implicit way, only the
name and the type are given, see Noon above. The value is defined in the host
language. In the explicit way, the name, the type, and the value are declared,
see WordLength above. This is possible only for constants of predefined types.

3.3 Functions

Functions take a list of objects of arbitrary types and return a single object
of arbitrary type:

function CompareTime (Time, Time) : boolean;
function CombineBeeps (Beep, Beep) : Beep;
function MakeRectangle (Coord, Coord) : Rectangle;
function InRectangle (Coord, Rectangle) : boolean;

Functions are defined in the host language. They are called in data expres-
sions, and they must be side-effect free.

3.4 Procedures
Procedures have two lists of arguments of arbitrary types:

procedure IncrementTime (Time) (integer);
procedure TranslateAndRotate (Rectangle) (Coord, integer);

The first list is the list of reference arguments that are passed by reference and
possibly modified by the call. The second list is that of value arguments that
are passed by value and not modified. For example, in TranslateAndRotate,
the rectangle is passed by reference and modified when translated and ro-
tated, while the translation and rotation arguments are passed by value.
Each of the lists can be empty. Procedures are defined in the host language.
They are called by the call statement, which is instantaneous.

3.5 Tasks

Tasks are declared exactly as procedures:

task MoveRobotInsideRectangle (Coord) (Rectangle);

Their actual code is given in the host language. The difference between tasks
and procedures is that task execution is assumed to be non-instantaneous,
unlike procedure calls. Tasks are executed by the exec statement and cou-
pled with return signal as described in Section 7.16. Tasks are supposed to
run concurrently with the ESTEREL program. The way this is implemented
depends on the compiler, on the host language, and on the run-time system.

4 Signals and Sensors

Signals and sensors are the logical objects received and emitted by the pro-
gram or used for internal bookkeeping. They are instantaneously broadcast
throughout the program, which implies that all statements see each of them
in a consistent way. Pure signals have a presence status, present or absent.
In addition to their status which is as for pure signals, valued signals carry
a value of any type. Sensors have a value but no status.

There is one predefined signal, the special pure signal tick that repre-
sents the activation clock of the reactive program. Its status is present at
each instant.

Signals can be interface signals declared in the module interface or lo-
cal signals declared by the signal local signal declaration statement, see
Section 4.5.

4.1 Interface Signal Declarations

Interface signals are either input, output, inputoutput, or return. The
return signals are used to signal termination of external tasks, see Sec-
tion 7.16. Here are the interface signals declarations of the above modules:

input UL, UR, LL, LR; % the four watch buttons
input S, HS; % second and 1/100 second
output CurrentTime := Noon : Time;

output Beeper : combine Beep with CombineBeeps;
return RobotInRectangle;
output YesVotes := 0 : combine integer with +;

Here, UL, UR, LL, LR, S, and HS are pure input signals. The CurrentTime
output signal is a valued signal of abstract time Time, with value initialized
to Noon. Similarly, the YesVotes signal is integer-valued with initial value 0.
If no initial value is given, as for Beeper, the value is undefined until the first
time the signal is received from the environment or emitted by the program
itself.

The return signal RobotInRectangle is a special input signal used for
signaling external task completion, see Section 3.5. A return signal can be
valued just as a standard input signal.

A local signal declaration is declared using the signal keyword:

signal AuxSigl, AuxSig2 : integer in
statement
end signal

The local signal declaration construct defines a statement that can be put
wherever a statement can.

Notice that types must be declared separately for each signal in a signal
declaration list. Here, AuxSigl is a pure signal.

4.2 Single and Combined Valued Signals

The above CurrentTime signal is single: it cannot be emitted twice in the
same instance and it cannot be emitted if it is received from the environment.
This restriction holds for any valued signal not declared using the combine
keyword. The signals declared with that keyword are called combined sig-
nals.

In the above declarations, Beeper and YesVotes are combined. For them,
the values simultaneously emitted by several emitters or received from the
environment are gathered and combined using the specified binary function
or operator that must be commutative and associative. For Beeper, the
Beep type can represent a set of sound frequencies and combining several
sounds by CombineBeeps can be taking the union of their frequencies. In
this way, one can hear the timekeeper, alarm, and stopwatch beep together.
For YesVotes, using addition as a combination function makes it easy to
count simultaneous yes votes if each participant broadcasts the number of
voices he or she represents.

For type boolean, the combination function can be and or or. For type
integer and float, the combination function can be + or *. Any other com-
bination function must be user-defined and declared prior to the signal dec-
laration. The corresponding host language combination function is assumed
to be commutative and associative, which obviously cannot be checked by
ESTEREL.

4.3 Sensors

Sensors are valued input signals without presence information. A sensor is
declared by giving its name and type:

sensor Temperature : integer;

Sensors differ from signals in the way they are interfaced with the envi-
ronment. The value of a sensor is read by the program whenever needed.
Therefore, the notion of an initial value is meaningless for sensors.

4.4 Input Relations

Input relations declare some Boolean condition about input or return signals
that are assumed to be guaranteed by the environment. In the above WATCH
example, the relations are:

relation UL # UR # LL # LR;
relation S => HS;

The first relation is called an incompatibility (or exclusion) relation. It
asserts that the four input buttons are incompatible (or exclusive), i.e., that
no two of them can be simultaneously present. The second relation is called
an implication relation. It asserts that S can be present only if HS is, i.e.,
that a second is always synchronous with a 1/100 second.

Relations are useful to avoid specifying irrelevant behaviors. For exam-
ple, in the WATCH example, the exclusion relation asserts that the user cannot
simultaneously request to change to set-watch mode and to stopwatch mode;
in practice, buttons are serialized by the low-level event handler. Relations
are also useful to optimize automaton code generation, for circuit code opti-
mization, and to speed-up program verification.

4.5 Local Signal Declaration

A local signal declaration is performed by the following statement construct:

signal Alarm,
Distance : integer,
Beep := OneBeep : combine Beep with CombineBeeps
in
p
end signal

where p is any statement. The individual declarations are the same as for
interface signals, see Section 4. The scope of a local signal declaration is
the body p. Scoping is lexical: any re-declaration of a signal hides the outer
declaration.

Signals are subject to reincarnation and may provoke causality problems,
see Section 8 and Section 9.

10

5 Variables

Variables are assignable objects declared by the local variable declaration
statement, which has the form

var X : float,
Count := 7 Distance : integer,
Deadline : Time
in
p
end var

where p is any statement. A variable declaration declares the names of
the variables, their types, and possibly their initial values. The scope of a
variable declaration is the body p. Scoping is lexical: any re-declaration of a
variable hides the outer declaration. The type must be declared individually
for each variable. The declaration

var X, Y : integer in

is incorrect since X has no type. One must write

var X : integer, Y : integer in

A variable has a name and a type, and it is modified by assignments and
procedure calls, see Section 7.2. Unlike a signal, a variable can take several
successive values at the same instant. For example, in the statement

X := 0;

emit S1(X);

X:= X+1;

emit S2(X)

the signals S1 and S2 are emitted simultaneously with respective values 0 and
1, the variable X taking these values in succession in the instant. This poses
absolutely no problem in the constructive semantics of ESTEREL presented
in Section 9, provided of course that variables cannot be shared in read-write
mode between threads. More precisely, if a variable is written in a thread,
then it can be neither read nor written in any concurrent thread.

6 Expressions

There are three kinds of expressions in ESTEREL: data expressions, signal
expressions, and delay expressions.

11

6.1 Data Expressions

Data expressions are built as usual by combining basic objects using oper-
ators and function calls. Their evaluation is instantaneous. All expressions
must type-check.

Constants and variables appear under their names. The current value
of a valued signal or sensor § is written 7S. Traps can carry values just as
signals, see Section 7.13. However, the name space of traps is distinct from
that of signals, and we must use a different symbol to access trap values. The
current value of a valued trap T is written ?7T. Accessing a yet undefined
signal or trap value is an error. Function calls are written as usual. Here are
some expressions:

X * WordLength
FloatToInteger (?Temperature) * (?7ExitCode + 5)

6.2 Signal Expressions

Signal expressions are Boolean expressions over signal statuses. They are

used in instantaneous present tests or in delay expressions. Signal expres-

sions are obtained by combining signal names or the tick predefined signal

using the not, and, and or operators with the usual binding conventions: not

binds tighter than and and and binds tighter than or. Here are examples:
Meter and not Second

Bitl and Bit2 and not (Bit3 or Bit4)
not tick

The interpretation of signal expression is obvious, but some constructive
causality aspects have to be well-understood, see Section 9 for details. Notice
that the expression tick is always true, so the expression not tick is always
false.

6.3 Delay Expressions

Delay expressions are used in temporal statements such as await or abort.
There are three forms of delay expressions: standard delays, immediate de-
lays, and count delays. A delay starts when the temporal statement that
bears it starts, and it elapses at some later instant, possibly at the same
instant for immediate delays.

Standard delays are defined by a signal expression. For instance, the
delay

12

Meter and not Second

elapses at the nert instant where a meter occurs without a simultaneous
second. Standard delays never elapse instantaneously.

Immediate delays are defined by the immediate keyword followed by a
signal expression, which must appear within brackets ‘[]” unless it is a single
identifier. For instance, the immediate delay

immediate [Meter and not Second]

elapses instantaneously if a meter and no second are present when the delay
is initiated, and it behaves as a standard delay otherwise. Notice that there
is only one layer of brackets ‘[]’ and that standard parentheses are used inside
delay expressions, as for Meter and (not Second).

Count delays are defined by an integer count expression followed by a
signal expression.

The signal expression must be bracketed using square brackets ‘[] if it
is not reduced to a single signal. Here are examples:

3 Second
5%X Meter
3 [Second and not Meter]

The expression is evaluated only once when the delay is initiated. If the
expression’s value is 0 or less, it is set to 1. Therefore, a count delay never
elapses instantaneously. This is fundamental for various kinds of static analy-
sis including constructiveness analysis, see Section 9 and Section 7.6.

Notice the restrictions on delays: there is no immediate count delay,
and counts cannot be intertwined with Boolean signal operators. This is a
deliberate choice. We think that expressions such as

immediate [3 [n Seconds or p [Meter and not Second]]]

are too difficult to understand.

7 Statements

We describe here all statements except local signal declaration described in
Section 4.5 and local variable declaration described in Section 5. All con-
structs but sequencing ‘;’ and concurrency ‘||’ use bracketed keywords:
abort—end abort, etc. Repetition of the initial keyword is optional, so

13

abort—end is also correct. To resolve the remaining syntactic ambiguities,
any statement can be explicitly bracketed using square brackets ‘[]. Es-
TEREL is fully orthogonal: statements can be freely mixed in an arbitrary
way. One can sequence parallel statements or put sequences in parallel, one
can subject any statement to an abortion, etc.

In the sequel, we do not add indentation for parallel statements. There-
fore,

signal S in

p
I

q
end signal

is the same as the more indented form

signal S in

p
[

q
end signal

7.1 Basic Control Statements
There are three basic pure control statements:

nothing
pause
halt

The nothing statement terminates instantaneously when started. The pause
statement pauses for one instant. More precisely, it pauses when started, and
it terminates at next instant (pause can also be written “await tick”, see
Section 7.9). The halt statements pauses forever and never terminates.

7.2 Assignment and Procedure Call
See Section 5 for the definition of a variable. Assignments have the form

X :=e

14

where X is a variable and e is a data expression. The variable and expression
must have the same type. Assignments are instantaneous.
Procedure calls have the form

call P (X, Y) (el, e2)

where X and Y are variables and the e; are expressions. The types must
match those of the declaration. The variables are modified by the call. The
call is instantaneous.

7.3 Signal Emission

Instantaneous signal emission is realized by the emit statement, which has
one of two forms:

emit S
emit S(e)

For a pure signal S, the emit statement simply emits S and terminates in-
stantaneously. For a valued signal, the emit S(e) statement evaluates the
data expression e, emits S with that value, and terminates instantaneously.

For a single signal, if an emit signal is executed, it must be the only one
in the instant; for an input single signal, no emit statement can be executed
if the signal is received in the input event. For a combined signal, the emitted
value is combined with those emitted by other emit statements executed in
the instant using the combination function. For an input combined signal
that is received from the environment and locally emitted at the same time,
the received and emitted valued are combined.

Continuous emission of a signal is realized by the sustain statement:

sustain S
sustain S(e)

When started, the sustain remains active forever and it emits S at each
instant. For a valued signal, the data expression e is re-evaluated at each
instant. The “sustain S” statement abbreviates “loop emit S each tick”,
see Section 7.11.

15

7.4 Sequencing

Sequencing is done using the ‘;’ sequence operator. In

P q
the first statement p is instantaneously started when the sequence is started,
and it is executed up to completion or trap exit. If p terminates, ¢ is im-
mediately started and the sequence behaves as ¢ from then on. If p exits

enclosing traps, the exits are immediately propagated and ¢ is never started,
see Section 7.13. For example, “exit T; emit S” does not emit S.

7.5 Looping

A simple loop has the following form:

loop

p
end loop

The body p is re-started afresh upon termination, this forever. If p exits
enclosing traps, the exits are propagated instantaneously. This is the only
way to exit a loop from inside. Of course, a loop can be killed by an external
preemption statement, see Section 7.10 and Section 7.13.

The body of a loop is not allowed to be able to terminate instantaneously
when started. This condition is static: there must be no potential direct
path from starting to termination in p, even if that path cannot be taken
dynamically. For instance, the following loop is rejected:

loop
present I else

end present;
present J else

end present
end loop
Even if the ‘...’ statements have delays, there is a potential instantaneous
path in the body, corresponding to the case where I and J are both present.
If T and J are inputs declared incompatible by the relation I # J, then the
instantaneous path is a false one since it cannot be taken in any valid input
configuration. The program is rejected nevertheless. One must add an extra
clause involving a delay:

16

loop
present I else

end present;
present J then

pause % unreachable
else

end present
end loop

7.6 Repeat Loops

A repeat loop executes its body for a finite number of times. The body is
not allowed to terminate instantaneously. The simplest form is

repeat e times

p
end repeat

The expression e must be of type integer. It is evaluated only once at
starting time. The body is not executed at all if e evaluate to 0 or to
a negative number. Therefore, the simple repeat statement is considered
as possibly instantaneous and it cannot be put in a loop if not preceded or
followed by a delay, this even if its own body is non-instantaneous. Therefore,
the following statement is rejected as being a potentially instantaneous loop:

repeat 5 times
repeat 3 times
end repeat
end repeat
ESTEREL compilers are not required to perform static analysis and discover
that 3 is never null, because one can replace 3 by user-defined constants or

complex expressions. To solve this problem, we ask the user to assert that
the body will be executed at least once by adding the positive keyword:

repeat 5 times
positive repeat 3 times

end repeat
end repeat

17

In the positive repeat statement, the test for repetition is performed only
after the first execution of the body. The body is not allowed to be able
to terminate instantaneously, and the whole positive repeat statement
inherits the same property.

7.7 The present Signal Test

The present statement branches according to the instantaneous values of
signal expressions. The simplest form checks for one signal expression and
performs binary branching. Each of the then and else branches can be
omitted, but at least one of them must be there. An omitted branch is
implicitly nothing:

present S then p else g end present
present [Second and Meter] then p end present
present Meter else ¢ end

The case form tests several signal expressions in sequence:

present
case Meter do
Distance := Distance+1;
emit Distance(Distance)
case Second do
emit Speed(Distance)
end present

The tests are taken in order, and the first true expression starts immediately
its do clause. If the do clause is omitted, the present statement simply
terminates. If none of the expressions is true, the present statement termi-
nates. One can add an else statement for that case:

present
case [BitO and Bitl] do
emit Load
case [Bit0O and not Bitl1] do
emit Store
case [not BitO and Bitl1] % no-op
else
exit WrongOpCode
end present

18

7.8 The if Data Test

The if statement is used to test Boolean data expressions. In the basic
binary form, either the then or the else clause can be omitted, as for the
present statement:

if X>=0 then p else ¢ end if
if X=Y and Y<>?7Z then p end
if 7Flag else ¢ end

Multiple cases can be checked in sequence using the elsif keyword, the case
keyword being reserved for signal expressions:

if X > 5 then
p

elsif X > 3 then
q

else
T

end if

The conditions are evaluated in sequence. The first true condition triggers
the corresponding statement. If no condition is true, then the if statement
executes the else statement if there is one and terminates otherwise.

7.9 The await Statement

The await statement is the simplest temporal statement. In its basic form,
it simply waits for a delay:

await Second

await immediate Second

await immediate [Second and Meter]
await 2 Second

await 2 tick

await 2 [Second and not Meter]

The delay is started when the await statement is started. The statement
pauses until the delay elapses and terminates at that instant. An immediate
await statement terminates instantaneously if the signal expression is true
at starting instant. Be careful: the sequence

19

await immediate Meter;
await immediate Meter

terminates instantaneously if Meter is present at starting instant.
A do clause can be used to start another statement when the delay
elapses:

await 2 Second do
emit Beep
end await

This is simply an abbreviation for “await 2 Second; emit Beep”. As for
present, one can introduce a case list:

await
case 2 Second do p
case immediate Meter
case Button do ¢

end await

The above statement immediately terminates if Meter occurs at start time.
Otherwise, the first delay to elapse determines the subsequent behavior: p
is started if 2 Second elapses first, the await statement simply terminates
if Meter occurs first, and ¢ is started if Button occurs first. If several delays
elapse at the same time, the first one in the list takes priority. For exam-
ple, if Meter and Button occur simultaneously, then the await statement
terminates and ¢ is not started.

7.10 The abort Statements

An abortion statement kill its body when a delay elapses. For strong abor-
tion, performed by abort, the body does not receive the control at abortion
time. For weak abortion, performed by weak abort, the body receives the
control for a last time at abortion time. The syntax is as follows:

abort p when 3 Meter
weak abort p when 3 Meter

For both constructs, the body p is run until termination or until the de-
lay elapses. If p terminates before the delay elapses, so do the abort and
weak abort statements. Otherwise, p is preempted when the delay elapses;

20

at that instant, p is not executed with strong abortion, and it is executed
for a last time with weak abortion (p has rights to its “last wills”).

If the delay is immediate and elapses immediately at starting time, the
body is not executed at all with strong abortion, and it is executed for one
instant with weak abortion For example, in

abort
sustain O
when immediate I

the abort statement terminates immediately without emitting 0 if I is
present at starting time. If abort is replaced by weak abort, the whole
statement also terminates instantaneously but 0 is emitted once.

As for await, one can add a do clause to execute a statement ¢ in case
of delay elapsing;:

abort % or weak abort

p
when 3 Meter do

q
end abort

With both weak and strong abortion, ¢ is executed if and only if p did not
terminate strictly before delay elapsing. At abortion time, with strong abor-
tion, p is not executed and ¢ is immediately started. With weak abortion,
the first instant of ¢ is done in sequence after the last instant of p.

As for await, one can introduce an ordered list of abortion cases:

abort % or weak abort

p
when

case Alarm do r

case 3 Second do g

case immediate Meter
end abort

Here, p is immediately aborted if there is a Meter at starting time. Otherwise,
it is run for at least one instant. The elapsing of any of the three delays aborts
p. If there is a do clause for the delay, that statement is immediately started;
otherwise, the abort statement simply terminates. If more than one of the
delays elapses at abortion time, then the first one in the list takes priority
as for the await statement.

Nesting abort statements also builds priorities. In the statement

21

abort
abort

p
when I do

q
end abort

when J

the signal J takes priority over I if they occur simultaneously, and ¢ is not
started in that case. This is no special rule, but just a consequence of the
strong abortion semantics of abort.

Finally, notice that “await S” can be defined as “abort halt when S”.

7.11 Temporal Loops

Temporal loops are loops over strong abortion statements. The first form is

loop

p
each d

where d is a non-immediate delay. At starting time, the body p is started
right away, and it is restarted afresh whenever the delay d elapses. If p
terminates before d elapses, then one waits for the elapsing of d to restart p.
The “loop each” statement is simply an abbreviation for

loop
abort
p; halt
when d
end loop

The delay cannot be immediate, otherwise the loop body would be instan-
taneous.
The second temporal loop has the form

every d do

p
end

The difference is that d is initially waited for before starting the body p.
The delay d can be immediate. In that case, at starting instant, p starts
immediately if the delay elapses immediately. The statement

22

every 3 Second do

p
end every

abbreviates

await 3 Second;
loop

p
each 3 Second

The statement

every immediate Centimeter do

p
end

abbreviates

await immediate Centimeter;
loop

p
each Centimeter

All temporal loops are infinite. The only way to terminate them is by exiting
a trap, see Section 7.13 or by the elapsing of an enclosing abortion delay.

7.12 The suspend Statement

Abortion violently preempts a statement and kills it, in the same way as "C
kills a process in Unix. Suspension has a milder action, like "Z in Unix. The
basic syntax is

suspend

p
when s

where s is any signal expression. When the suspend statement starts, p is
immediately started. Then, at each instant, the following occurs:

o If the signal expression s is true, then p remains in its current state
and the suspend statement pauses for the instant.

23

o If the signal expression s is false, then p is executed for the instant.
If p terminates or exits a trap, so does the suspend statement. If p
pauses, so does the suspend statement, and suspension is re-examined
at next instant.

Here is an example:

suspend
abort
sustain O
when J
when I

emits 0 at first instant and at all subsequent instants where I is absent,
until the first instant where I is absent and J present. Then the suspend
statement terminates and 0 is not emitted.

The default suspend statement is delayed, in the sense that the signal
expression is not tested for at first instant. The immediate form performs
that test:

suspend

p
when immediate s

Here p is not started at first instant if s is true. The immediate form can be
rewritten as follows:

await immediate [not s 1;
suspend

p
when s

7.13 Traps
A trap defines an exit point for its body. The basic syntax is

trap T in

p
end trap

24

The body p is immediately started when the trap statement starts. Its
execution continues up to termination or trap exit, which is provoked by
executing the “exit T” statement. If the body terminates, so does the trap
statement. If the body exits the trap T, then the trap statement immediately
terminates, weakly aborting p.
The weak abort statement can be defined using traps. The construct
“weak abort p when S” is an abbreviation for
trap T in
p;
exit T
I
await S;
exit T
end trap

7.13.1 Nested Traps

When traps are nested, the outer one takes priority. Consider for example
trap U in
trap T in

p
end trap;

q
end trap;

T

If p exits T, then ¢ is immediately started. If p exits U, then r is immedi-
ately started. If p exits simultaneously T and U, for example by executing
“exit T || exit U”, then U takes priority and only r is executed. From the
point of view of the “trap T” statement, T is discarded and U is propagated.

7.13.2 Trap Handlers

A handler can be used to handle a trap exit, with the following syntax:
trap T in

p
handle T do

q
end trap

If p terminates, so does the trap statement. If p exits T, then p is weakly
aborted and ¢ is immediately started in sequence.

25

7.13.3 Concurrent Traps

Several traps can be declared using a single trap keyword. In this case, the
traps are called concurrent traps. Concurrent traps are at the same priority
level, and any of them can have a handler. If several traps are simultaneously
exited, then the corresponding handlers are executed in parallel:
trap T, U, V
p
handle T do

q
handle U do

r
end trap

Here, ¢ and r are executed in parallel if p exits T and U simultaneously. Since
they are concurrent, the ¢ and r handlers cannot share variables. The trap
statement simply terminates if p exits V that has no handler.
Here is the translation of “weak abort p when S do ¢ end” using concurrent
traps:
trap Terminate, WeakAbort in
p;
exit Terminate

I

await S;

exit WeakAbort
handle WeakAbort do

q
end trap

7.13.4 Valued Traps

Traps can be valued exactly as signals. Value initialization and combined
traps are allowed. This is useful to pass a value to the handler. The value
is obtained as the result of the expression ‘?7S’, which is allowed only in the
handler:

trap Alarm : combine integer with + in
. exit Alarm(3)
. exit Alarm(5)
handle Alarm do
emit Report(?7?7Alarm)
end trap

26

Of course, concurrent traps can be valued:

trap T, U := 0 : integer, V : combine integer with + in
p

handle T do
q

handle U or V do
emit 0(??7U0 + ?7V)

end trap

Beware of uninitialized trap values.

7.14 The Parallel Statement

The parallel operator puts statements in synchronous parallel. The signals
emitted by the branches or by the rest of the program are instantaneously
broadcast to all branches at each instant.

A parallel can be binary, as in p | | g, ternary, asin p |1 g ||, or of any
arity. Syntactically, the sequencing operator ‘;’ binds tighter than the par-
allel operator ‘| |’. Therefore, p; ¢ | | » means [p; ¢1 || 7, which is different
from p; [q || r] where the brackets are mandatory.

A parallel statement forks its incoming thread, starting instantaneously
all its branches when it starts. The parallel terminates when all its branches
have terminated, waiting for the last one if some branches terminate earlier.
The parallel propagates a trap T as soon as one of its branches exits T, weakly
aborting all its branches at that time. See Section 7.13 for the case where
several traps are simultaneously exited.

Variables can only be shared among parallel branches if they are read-
only. If a branch can write a variable X, then no other branch can read or
write X. Signals are the only truly shared objects.

7.15 The run Module Instantiation Statement

A module can be instantiated within another module using the run exe-
cutable statement. In the simplest form, one simply writes

run SPEED
This amounts to syntactically replace the run statement by the body of the

SPEED module. Recursive or mutually recursive submodule instantiation is
forbidden.

27

The data declarations of the instantiated submodule are exported to the
parent module. If some data objects were already declared in the parent,
the parent and child declarations must be the same, which means that all
data objects are global.

The signal interface declarations of the instantiated module are simply
discarded, as well as the relation declarations. This means that the interface
signals of the instantiated submodule must exist in the parent module with
the same type. Notice that a signal declared as input in the submodule is
seen as global after instantiation. For instance, in

module M :
input I;
emit I

end module

module N :
output I;
run M

end module

the signal I is effectively emitted by N although it was declared as an input
in M. This is an anomaly that should be corrected some day.

Any interface object can be renamed at module instantiation time using
the following renaming syntax:

run GENERIC_SPEED [type integer / T;
constant 0 / Initial,
1 / Increment;
function + / Add;
signal CarSpeed / Speed]

A renaming X / Y is read “X renames Y’. The renaming object X can be
either an explicit constant or operator or an identifier. If it is an identifier,
it must be declared in the parent module. The renamed object Y must be an
identifier belonging to the data or signal interface of the instantiated module.
The kinds and types must match.

Full renaming makes it possible to build generic modules. Partial renam-
ing is also possible. In that case, a submodule interface object that is not
renamed is captured by the parent object of the same name (and kind: a
type is captured by a type, a signal by a signal, etc.).

The included module itself can be renamed:

28

run CarSpeed / SPEED [...]

I
run BicycleSpeed / SPEED [...]

This is useful for identifying submodule occurrences in symbolic debuggers.

7.16 The exec Task Execution Statement

External procedure calls performed using the call statement are supposed to
be instantaneous. This does not fit with many practical applications where
procedure computing times cannot be neglected. The task-exec mechanism
we now describe makes it possible to control execution of external actions or
tasks that take time.

Roughly speaking, tasks behave as procedures that are executed asyn-
chronously with the ESTEREL program. At ESTEREL abstraction level, we
take a logical view of tasks. We care about controlling them, and we do not
care about how they are actually executed in the environment concurrently
with the ESTEREL program. The only thing we are interested in is when
external tasks start, when they terminate in ESTEREL sense, and when they
should be suspended or aborted by other ESTEREL statements.

Tasks are not limited to be computationally intensive. They can also be
of a more physical nature. For instance, in Robotics, a task may be “grasp
this object”.

Tasks are declared in the data interface part of a module, see Section 3.

7.16.1 The exec Statement and the Return Signals

The statement that executes a task is the exec statement. It has the form

exec TASK (reference-params) (value-params) return R

where R is called the return signal. A return signal is a special input signal
declared using the return keyword instead of the input keyword in the
module signal interface:

return R1;
return R2 : integer;
return R3 : combine FOO with F;

Notice that a return signal can have a value as any input signal. Return
signals can also appear in exclusion or implication relations together with
input signals, see Section 4.4. Like any other input signal, a return signal

29

can be tested for presence or awaited concurrently with task execution. The
use of this feature will be explained in Section 7.16.6. Unlike a standard
input, a return signal cannot be internally emitted by the program.

7.16.2 External Task Execution

When an “exec T return R” statement starts, it signals to its environment
that a fresh instance of the task T should start with parameters passed by
reference and value just as for procedures. The signaling is instantaneous.
The ESTEREL program does not wait for the task and continues reacting
autonomously. At some instant in the strict future of the starting instant,
the environment signals back task completion to the ESTEREL program by
sending the return signal R. Within the ESTEREL program, receiving R pro-
vokes instantaneous update of reference arguments according to the values
returned by the task and instantaneous termination of the exec statement.

During its execution, an exec statement can be suspended or aborted.
This is signaled to the external task by sending appropriate suspension and
abortion signals.

The task launching and signaling implementation mechanism entirely
depends on the compiler and run-time system. The only implementation
constraint is to respect the ESTEREL logical view.

7.16.3 Uniqueness of Return Signals

One may have several exec statements for a given task T; therefore, one may
also have different concurrent instances of the same task in the environment.
The return signal is used to tell the ESTEREL program which instance has
terminated. For this to be possible, return signals must uniquely identify
exec statements. Hence, we impose the following restriction:

No two exec statements in a program can have the same return
signal.

This condition must be verified after submodule expansion. Uniqueness of
return signals may call for explicit renaming at submodule instantiation time:

30

module OneTask :
task TASK (integer) (integer);

return R;

var X := 0 : integer in
exec TASK(X) (1) return R

end var

end module

module TwoTasks :
return R1, R2;

run Taskl = OneTask [signal R1 / RI]
[l

run Task2
end module

OneTask [signal R2 / R]

7.16.4 Abortion of exec Statements

As any other ESTEREL statement, an exec statement is subject to abortion
by abort, weak abort, or trap statements and to suspension by suspend
statements. The simplest case of abortion is the weak one. Consider the
example:

weak abort
exec TASK (X) (1) return R;
when I

At first instant, the task is started. Then, the behavior is as follows:

e IfR occurs before I or if R and I occur simultaneously, then X is updated
and the whole weak abort statement terminates.

o If T occurs before R, then execution of TASK is aborted and the external
task is aborted. There is no update of X.

Strong abortion is a little bit more delicate. Consider the example:

abort
exec TASK (X) (1) return R;
when I

After starting the task at first instant, the behavior is as follows:

31

o If R occurs before I, then X is updated and the whole abort statement
terminates.

e If T occurs before R, then execution of TASK is aborted and the external
task is aborted. There is no update of X.

e If T and R occur simultaneously, then the abort statement terminates.
Although the task did terminate, X is not updated since the body of
the abort statement does not receive control. No abort signal is sent
to the task either since it is terminated.

Notice the subtle difference between weak abortion by weak abort or exit
and strong abortion by abort in the case where R and I are simultaneous:
with strong abortion, update of reference variables is not performed, while
it is performed with weak abortion.

7.16.5 Suspension of exec Statements

Consider a program fragment of the form

suspend
exec TASK (X) () return R
when S

When $ occurs after the starting instant, the exec statement is suspended.
This is signaled to the environment by sending an implementation-dependent
suspension signal. The signal is sent at every instant where the exec state-
ment is suspended.

Termination of the exec statement can occur only when that statement
is active. Assume that R and S occur simultaneously. Then, R does not
provoke termination of the exec statement and its occurrence is lost. It is
the environment’s responsibility to sustain R until the exec statement is not
suspended any more, which is easy using the abort and suspend signaling
mechanism.

The environment can also transform the suspension information available
at each tick into a suspend-resume information usually more appropriate for
operating systems.

7.16.6 Testing for the ReturnSignal

When an exec statement is strongly aborted, one may need to know if the
external task did terminate in the instant. This is easy using a present test
on the return signal:

32

abort

exec TASK (X) (1) return R
when I do

present R then ... else ... end present
end abort

The same can be done for suspension

suspend
exec TASK (X) () return R
when S
[
await R do ... end await

7.16.7 Multiple exec

The multiple exec statement makes it possible to control several tasks si-
multaneously. It resembles the “await...case” statement:

exec
case T1 (...) (...) return Rl do pl
case T2 (...) (...) return R2 do p2

case Tn (...) (...) return Rn do pn
end exec

Reference variables can be shared between the cases. As for the multiple
await statement, “do pi” can be omitted if pi is just nothing.

When a multiple exec statement starts, all tasks are started simultane-
ously and concurrently. Then, one waits for the return signals. When at least
one return signal occurs, the exec statement terminates instantaneously; at
that instant, all non-terminated tasks are aborted, only one reference argu-
ment update is performed, the one corresponding to the first terminated case
in the case list, and only the corresponding do continuation is taken. In case
of abortion, all tasks are aborted simultaneously. In case of suspension, all
tasks are suspended simultaneously.

A typical use of the multiple exec statement is to try several ways to
perform a given computation in parallel, stopping when the first computation
is done:

33

exec
case InvertMethodl (Matrix) () return R1
case InvertMethod2 (Matrix) () return R2
case InvertMethod3 (Matrix) () return R3
end exec

All necessary bookkeeping is nicely performed by the ESTEREL compiler.

7.16.8 Immediate Restart of an exec Statement

An exec statement may be aborted and restarted immediately. Consider for
instance

loop
exec TASK (X) (1) return R;
each I

If T occurs before task completion, the ESTEREL program signals to the
environment that the current instance of TASK should be aborted and that a
fresh instance should be started right away.

A slightly more difficult situation appears in the following somewhat
artificial program fragment borrowed from [3]:

loop
trap T1 in
loop
trap T2 in
exec TASK (X) (1) return R
Il
await I do exit T2 end
end trap
end loop
I
await I do exit T1 end
end trap
end loop

At first instant, a fresh instance of TASK is started. Then, if T occurs before
R, the following happens instantaneously: the inner trap T2 is exited and an
abort information is sent to the environment to abort the running instance
of TASK; the inner loop loops, and another TASK is restarted immediately;
however, the outer trap T1 is also exited, which implies that this new instance

34

of TASK is aborted right away; since the “trap T1” statement terminates, the
outer loop loops, and yet another instance of TASK is started, this time in a
for-real way.

In such an intricate behavior, the intermediate launching of TASK by the
inner loop does not provoke any signaling to the environment, the task being
simply considered as stillborn by ESTEREL. Only the aborting of the current
instance and the starting of the last instance are signaled.

Because of this special handling of stillborn tasks, we can guarantee the
following property:

At any instant, at most two instances of a task launched by a
given exec statement can be active. The only possibility to have
two instances active at the same time is when an already active
and not yet terminated instance is aborted, while a fresh instance
is started. In ESTEREL, this means that the exec statement is
aborted and is instantaneously restarted.

8 Reincarnation

Because of instantaneous looping of loops, local signals can have several
simultaneous instances that we call reincarnations. They pose no particular
problem, but one has to be aware of their existence. Here is an example:

loop
signal S in
present S then emit 01 else emit 02 end;
pause;
emit S
end signal
end loop

At first instant, the local signal S is declared. It is absent since there is no
emitter for it. Therefore, the else branch of the present statement is taken
and 02 is emitted. At second instant, the pause statement terminates and
S is emitted and set present. The loop body terminates and it is restarted
afresh right away. The local signal declaration is immediately re-entered. It
declares a fresh signal, distinct from the old one, whose status is lost. The
fresh incarnation is absent, unlike the old one. The present statement tests
the fresh incarnation and only 02 is emitted. Everything happens as if the
loop body was duplicated:

35

loop
signal S in
present S else emit 0 end;
pause;
emit S
end signal;
signal S in
present S else emit 0 end;
pause;
emit S
end signal;
end loop

In this obviously equivalent statement, the old and fresh incarnations are
split into two syntactically distinct signals that happen to bear the same
name S and the present statement is duplicated. In the original form,
the single S generates two distinct dynamic incarnations, and the present
statement dynamically tests the current incarnation of the signal.

9 Constructive Causality

The availability of instantaneous broadcasting and control transmission makes
it possible to write syntactically correct but semantically non-sensical pro-
grams. The constructive semantics mathematically described in [3] charac-
terizes sensible ESTEREL programs. It is the reference semantics of the lan-
guage. In this section, we briefly present constructive correctness in terms of
the intuitive operational semantics of ESTEREL programs, referring to [3] for
the mathematical definition. Most of the examples already appeared in [3]
and we keep the same names for them here. We also discuss the acyclicity
that automatically guarantees constructiveness and is very easy to check at
compile-time, unlike constructiveness.

9.1 Non-Reactive and Non-Deterministic Programs

In our class of application, reactivity and determinism are the minimal re-
quirements a program should obey. A program is reactive if it provides a
well-defined output for each input. A program is deterministic if it produces
only one output for each input.

Here is the simplest example of a non-reactive program:

36

module P3:

output O;

present 0 else emit O end
end module

Broadcasting means that a signal is present if and only if it is emitted. Here, 0

cannot be present, otherwise it would not be emitted and therefore absent; it

cannot be absent either, otherwise it would be emitted and therefore present.
Here is the simplest example of a reactive non-deterministic program:

module P4:

output O0;

present O then emit 0 end
end module

Here, 0 present can be seen as valid since it is justified by the emission of 0,
and 0 absent can also be seen as valid because it implies non-emission of 0.

9.1.1 Signal Dependency Cycles

Both examples involve an instantaneous dependency cycle between 0 and

itself. Similar examples can be constructed from dependency cycles between
two signals 01 and 02. Here is one:

module Pb:
output 01, 02;

present 01 then emit 02 end
I

present 02 else emit 01 end
end module

Dependency cycles can easily be constructed for signal values. Consider the
example

module PV1:
output 0 : integer;
emit 0(0);
every tick do

emit 0(70+1)
end every
end module

37

The programmer’s intention is clear: emit 0(n) at instant n. However, the
program makes no sense. Call o the value of 0. By definition of broadcasting,
o must satisfy the equation 0 = o+ 1, which is impossible. The right way to
write this program is to use a variable that is incremented in the instant:

module PV2:
output 0 : integer;
var X := 0 in
loop
emit 0(X);
X := X+1
each tick
end var
end module

This is one of the major uses of variables in ESTEREL'.

9.1.2 Acyclic Programs

The problems we mentioned are generally called causality problems. They
resemble deadlocks in asynchronous languages, and they are indeed “instan-
taneous deadlocks”. To avoid them, most synchronous languages require
signal dependency to be acyclic. In that case, it is obvious that any signal
has one and only one status and one and only one value, i.e., that programs
are reactive and deterministic. Acyclicity is very easy to check and it is
also quite natural in data-flow programs or in electronic circuits. However,
acyclicity has been rejected by ESTEREL users as being too restrictive a
condition. Consider the following programs:

module P13:
input I;
output 01, 02;
present I then
present 01 then emit 02 end
else
present 02 then emit 01 end
end present
end module

!Data-flow languages have primitives to directly access the previous value of a signal
at any time, which makes PV1 much simpler; such primitives are not yet available in
ESTEREL.

38

module P14:

output 01, 02;

present 01 then emit 02 end;
pause;

present 02 then emit 01 end
end module

In both P13 and P14, there is a static cyclic dependency between 01 and
02. However, for both programs, it is clear that the cycle is a false one and
that everything goes well at run-time. In P13, only one branch of the test
can be taken at a time, according to the externally defined status of I. In
P14, the dependency from 01 to 02 is valid at first instant only while the
reciprocal dependency is valid at second instant only. The imperative syntax
of ESTEREL makes the correctness of P13 and P14 obvious, which would not
be true of their data-flow counterparts. The more practical example of a
cyclic symmetrical bus arbiter will be presented in Section 9.4.

9.2 Logical Correctness

At first glance, it appears natural to simply require programs to be reactive
and deterministic. This is what we call logical correctness. Logical correct-
ness fits reasonably well with data-flow languages [10], but not with the
imperative style of ESTEREL. Consider the following example:

module P9:
output 01, 02;
present 01 then emit 01 end
I
present [01 and not 02] then emit 02 end
end module

Surprisingly enough, P9 is logically correct, with unique behavior 01 and 02
absent. Indeed, this hypothesis self justifies: 01 absent implies non-emission
of 01 and non-emission of 02, which is consistent with the assumption. We
leave it to the reader to check that no other hypothesis is consistent. The
problem is that self-justification does not fit with the standard control propa-
gation intuition of imperative language, where the evaluation of a test should
precede the evaluation of its branches, at least in a causal sense.

Another interesting example is the ESTEREL analogue of the Boolean
equation “0 = 0 and not 0™

39

module P12:

output O0;

present O then emit O else emit O end
end module

Here, 0 present is justified by 0 emitted and 0 absent is not justified since
0 would be emitted. Once more, the program is logically correct by self-
justification, the flow of control going backwards from the then part to the
test.

9.3 Constructiveness

The idea of the constructive semantics is to forbid self-justification and any
kind of speculative reasoning, replacing them by pedestrian fact-to-fact prop-
agation. Ignore values and signal expressions for a while, concentrating on
pure signal tests of the form “present $”. We use a three-valued logic for
signals, where the status of a signal is present, absent, or unknown. At
each instant, the statuses of the input signals are given by the environment
and the statuses of the other signals are initially set to unknown. The only
inferences we can perform are as follows:

1. An unknown signal can be set present if it is emitted.
2. An unknown signal can be set absent if no emitter can emit it.

3. The then branch of a test can be executed if the test is executed and
the signal is present.

4. The else branch of a test can be executed if the test is executed and
the signal is absent.

5. The then branch of a test cannot be executed if the signal is absent.

6. The else branch of a test cannot be executed if the signal is present.

The rules forbid speculative execution, since (3) and (4) can be applied only
if it is already known that the present statement must be executed. The
rules allow free false path pruning, since (5) and (6) can be applied anywhere,
see example P2 below.The precise mathematical rules are given in [3].

We say that a program is constructive if the status of each local or output
signal can be determined using these rules; it is then determined in a unique
way. Let us work through an acyclic example:

40

module P1:
input I;
output O0;
signal S1, S2 in

present I then emit S1 end
I

present S1 else emit S2 end
I

present S2 then emit 0 end
end signal

We start with status unknown for $1, S2, and 0. Assume I is present. Then,
the first test takes its then branch and emits S1, which sets S1 present. The
second test can proceed by terminating, which implies that $2 cannot be
emitted since its only emitter has been discarded. Therefore, S2 can be set
absent. Finally, the third present statement can proceed and terminate.
Since the “emit 0” statement is discarded, 0 can be set absent. Conversely,
assume I absent. Then S1 cannot be emitted and is set absent, which triggers
emission of S2, which itself triggers emission of 0. Notice that present tests
are locked until the status of the signal they test becomes known.

Well-behaved cyclic programs are handled without much difficulty. For
example, in P13 above, if I is present, then the emitter of 01 is discarded,
01 is set absent, the first present test terminates and discards “emit 027,
and 02 is set absent. Here is a more sophisticated example:

module P2:
output 0;
signal S in
emit S;
present 0 then
present S then
pause
end present;
emit O
end present
end signal
end module

In P2, S is emitted and set present before the control reaches the test for
0. Execution cannot proceed since the status of 0 is unknown. However, we

41

can perform false path pruning using rule (6) and infer that the implicit else
branch of the “present S” cannot be executed. This means that the “emit 0”
statement cannot be reached, which implies that 0 can be set absent since
it has no other emitter.

Logically incorrect programs are easily rejected. For example, in P3 or
P4, there is no way to make any progress from the unknown state. Logically
correct programs that require self-justification or speculative computation
are rejected as well. For example, in P12, the two “emit 0”7 statements can
neither be executed nor be discarded from the initial unknown status of 02.

When a signal has several simultaneous incarnations, each of them must
be handled independently. In practice, it is sufficient to reset the status to
unknown when entering the signal declaration.

9.3.1 Constructiveness and Preemption

Preemption statements are easily handled, noticing that they behave just as
tests for the guard at each instant where the guard is active. For example,
the following program is not constructive:

module P3bis:
output 0;
abort

sustain O
when 0

At first instant, the guard is inactive and 0 is emitted. At second instant,
the guard becomes active, and it must be tested before the body is executed,
in the constructive order. The body is neither found to be executed nor to
be discarded, and the program is non-constructive. At second instant, the
program’s body just behaves as

module P3ter:

present 0 else
sustain O

end present

In [11, 12], we prove that an electronic circuit that implements the Boolean equation
“0 = 0 or not 0” indeed behaves in a constructive way rather than in a logical one. For
some wire and gate delays, the output voltage won’t stabilize. We show that constructive-
ness is the logical counterpart of delay-independent electrical stabilization, which gives
strong physical roots to the constructive semantics.

42

which is a variant of P3. If abort is replaced by weak abort, the problem
disappears, since at second instant the statement behaves as

module P3bisWeak :
trap T in
present 0 then exit T end

I
sustain 0
end trap

which is obviously constructive, emits 0, and terminates.

9.3.2 Constructiveness of Signal Expressions

Signal expressions are evaluated as follows in the constructive semantics:
not e evaluates to false if e evaluates to true and conversely; e; or ey evalu-
ates to true as soon as one of e1 or e9 evaluates to true, even if the other one
is still unknown. and it evaluates to false if both e; and es evaluate to false.
The evaluation of e; and ey is dual. Notice that the evaluation is parallel or
lazy: the evaluation of an expression does not require the evaluation of all
its subexpressions.

9.3.3 Constructiveness for Valued Signals

Consider now a valued signal S. The most general case is that of a combined
signal with combination function F. Since each emitter can contribute to a
part of the final combined value, that value is known only when all emitters
are either executed or discarded. Unlike the computation of the status that
succeeds as soon as one emitter emits, the computation of the value cannot
be lazy.

A reader of the value is an expression ‘?S’. The expression must lock the
control until the value is defined. All data operators are strict, i.e., must
evaluate all their arguments before giving their result. This is an important
difference between pure and valued signals. Let X and Y be two Boolean-
valued signals. For the status test

present [X or Y] then p else ¢ end

the statement p is executed as soon as one of X or Y is emitted. For the value
test

if ?X or 7Y then p else ¢ end

43

the statement p is executed if one of 7X or ?Y is true, but only after the
status of both X and Y is known?®.

Value handling combines nicely with status handling. A statement such
as “emit S(2)” should be thought of as a sequence “emit S; ?S:=2” (this
for a single signal; one should invoke the combination function for a combined
signal). Consider the following toy example:

module OK :
output 01 : integer, 02: integer;
emit 01(702)
[
present 01 then emit 02(1) end
end module

This program is constructively correct, and both 01 and 02 are emitted with
value 1. The constructive reasoning is as follows: The “emit 01” statement
in the first branch is executed, hence, 01 is present, but its value is still
unknown. Since 01 is present, the then branch of the present statement
is executed, and 02 is emitted with value 1. From then on, the value 702
becomes readable, and the value of 01 is determined to be 1.

9.4 Constructiveness vs. Acyclicity

Although compile-time constructiveness analysis is available, acyclic pro-
grams should be preferred whenever possible, since their compilation is much
faster and generally more efficient. However, we mentioned that cyclic pro-
grams can be more natural. Let us show the example of a symmetric bus
arbitration mechanism®.

The bus is a ring on which a bunch of identical stations are hooked. At
each instant, the user of the bus can request the bus and he can obtain it or
not. A priority mechanism arbitrates simultaneous requests. A token defines
the current initial station. At any time, the bus is granted to the first station
that asks for it, starting from the initial station in clockwise order. To obtain
fairness, the token is moved to the next station at each instant.

The ESTEREL code of one station is

3In the ESTEREL v5 C translator, the Boolean or value operator is implemented by the
C ‘|’ operator that evaluates both its arguments. It is impossible to define a disjunction
operator that returns 1 as soon as one if its arguments is 1 in any sequential language
such as C, see [6]. Statuses are handled in a very different way.

“Thanks to R. de Simone for the example.

44

module STATION :

input Request; % from user
output Granted; % to user
output PreviousPassed; J from previous station
output Pass; % to next station
input Token; % from previous station
output PassToken; % to next station

loop

present [Token or PreviousPassed] then
present Request then
emit Granted
else
emit Pass
end present
end present
each tick
I
loop
present Token then
await tick;
emit PassToken
else
await tick
end present
end loop
end module

A bus with three stations is programmed in Figure 1.

The Pass1, Pass2, and Pass3 signals form a static dependency cycle
At any time, the cycle is dynamically cut at the station that possesses the
token. This is easily found by the constructive reasoning, that figures out in
which order things must be done in each state. However, there is no uniform
order in which to do things.

45

module BUS :

input Requestl, Request2, Request3;
output Grantedl, Granted2, Granted3;

signal Passl, Pass2, Pass3,

Tokenl, Token2, Token3,
PassTokenl, PassToken2, PassToken3

in
emit Tokenl

run Stationl /
STATION

run Stationl /
STATION

run Stationl /
STATION

end signal
end module

[signal

[signal

[signal

Requestl / Request,
Grantedl / Granted,
Pass3 / PreviousPassed,
Passl / Pass,

Tokenl / Token,

Token2 / PassToken]

Request2 / Request,
Granted2 / Granted,
Passl / PreviousPassed,
Pass2 / Pass,

Token2 / Token,

Token3 / PassToken]

Request3 / Request,
Granted3 / Granted,
Pass2 / PreviousPassed,
Pass3 / Pass,

Token3 / Token,

Tokenl / PassToken]

Figure 1: The 3-stations BUS program

46

Finally, notice that dependencies can be somewhat hidden, since circuit
generation from Esterel programs is non-trivial. Here is an example

trap T in
loop
emit O
each A
[
await I;
exit T
end;
emit B

Unexpectedly, that statement builds a dependency from A to B, which may
cause a cycle if the reverse dependency exists somewhere else. Understanding
why unfortunately requires understanding the circuit translation presented
in [3]°.

5Since it always pauses, the first branch always returns termination code 1 to the
parallel, and the wire that carries this information depends on A. The second branch has
a wire for exit T that enters the parallel synchronizer at code 2. The two wires join at
the synchronizer and gate at code 2. The wire sourced at this gate reaches the emit B
statement, hence the dependency.

47

References

[1]

2]

3]

4]

[5]

G. Berry. Real-time programming: General purpose or special-purpose
languages. In G. Ritter, editor, Information Processing 89, pages 11-17.
Elsevier Science Publishers B.V. (North Holland), 1989.

G. Berry. Preemption and concurrency. In Proc. FSTTCS 93, Lecture
Notes in Computer Science 761, pages 72-93. Springer-Verlag, 1993.

G. Berry. The Constructive Semantics of Pure Esterel. Draft book,
available at http://www.inria.fr/meije/esterel /esterel-eng.html, 1996.

G. Berry. The Esterel primer. Technical report, Ecole des Mines de
Paris and INRIA, 1997 (to appear).

G. Berry. The Esterel reference manual. Technical report, Ecole des
Mines de Paris and INRIA, 1997 (to appear).

G. Berry, P-L. Curien, and J-J. Lévy. Full Abstraction for Sequential
Languages, pages 89-132. Cambridge University Press, 1985.

G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science Of Computer Pro-
gramming, 19(2):87-152, 1992.

F. Boussinot and R. de Simone. The Esterel language. Another Look at
Real Time Programming, Proceedings of the IEEFE, 79:1293-1304, 1991.

N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer,
1993.

N. Halbwachs and F. Maraninchi. On the symbolic analysis of combi-
national loops in circuits and synchronous programs. In Furomicro’9),
Como (Italy), september 1995.

T. Shiple and G. Berry. Constructive analysis of cyclic circuits. In Proc.
International Design and Test Conference ITDC 96, Paris, France,
1996.

Thomas R. Shiple, Vigyan Singhal, Gérard Berry, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli. Analysis of combinational cy-
cles. Technical Report UCB/ERL M96, Electronics Research Labora-
tory, College of Engineering, University of California, Berkeley, 1996.

48

Appendix A: Old Syntax

Previous versions of ESTEREL used a different syntax for some constructs.
For backward compatibility, we have chosen to still parse the old syntax, also
we try to discourage its usage.

Valued signal used to be declared using parentheses as in emit state-
ments:

output Speed (integer);
output Beeper (combine Beep with CombineBeeps);

the standard notation is now the colon ‘:’ as for variables.
Abortion used to be written with the watching and upto keywords. For
instance,

abort

p
when S

used to be written

do

b
watching S

and

abort

p
when S do

q
end abort

used to be written

do

p
watching S timeout

q
end timeout

The upto statement used to be written

49

do

p
upto S

with the following meaning:

abort
p; halt
when S

This statement turned out to be not fundamental and its name is not fully
clear. It is still available.

50

*, 6,9 BUS, 46
+,6,9
1, 27 call, 7, 15, 29
and ;, 27 Capture, 28
-6 case, 18§, 21, 33
/: 6 Causality problems, 38
.= 10, 11, 14 combine, 9
;.16 Comment, 4
and ||, 27 Constant
<= 6 declaration, 6
<, 6 explicit, 6
< 6 false, 6
=’>7 10 float, 4
= 6 implicit, 6
>=, 6 integer, 4
> 6 renaming, 28
77, 12, 26 scope, 6
2,12 string, 4
[, 13, 14, 27 true, 6
10 type, 6
Y, 4 value, 6
1,13, 14, 27 Constructive semantics, 36, 40
Constructiveness
abort, 20, 21, 31, 32 acyclicity, 44
Abortion and preemption, 42
abort, 20 signal expression, 43
by trap, 25 valued signal, 43
of task, 31, 32
strong, 20 Data
weak, 20 constant, 6
weak abort, 20 declaration, 27
absent status, 8, 40 export,.27
and, 6, 9, 12 expression, 11, 12
Assignment, 11, 14 function, 7
await, 14, 19, 22 procedure, 7
scope, 6
Broadcasting, 27 task, 7

o1

type, 6
Declaration
data, 4
example, 5
interface, 4
order, 5
return, 5
sensor, 5
signal, 5
Delay
count, 13
elapsing, 12
examples, 12, 13
expression, 12
immediate, 13, 19, 21, 22
non-immediate, 22
standard, 12
start, 12
Dependency cycle, 37
false, 39
Determinism, 36
do, 18, 21, 33

each, 22, 34

else, 18, 19

elsif, 19

end, 13

every, 22

exec, 7, 29-34

exit, 25

Expression
data, 11, 12
delay, 12
examples, 12, 13
signal, 11, 12, 23

false, 6
False path, 40
Function

52

call, 7, 12
declaration, 7
definition, 7
renaming, 28

scope, 6

signal combination, 9
type, 7

halt, 14

handle, 25, 26

Host language, 4
constant definition, 6
function definition, 7
procedure definition, 7
task definition, 7
type definition, 6

Identifier, 4
if, 19
immediate, 13, 19, 21, 23
Initial value
of signal, 8, 10
of variable, 11
input, 8
inputoutput, 8
Interface
declaration, 4
data, 4
example, 5
sensor, 5
signal, 5

Keyword, 4

Logical correctness, 39
Loop
non-instantaneous, 16
simple, 16
loop, 16, 22, 35

Mathematical Semantics, 36
Module, 4

body, 4
full renaming, 28
interface, 4
data, 4
example, 5
sensor, 5
signal, 5
main, 4
name, 4
name renaming, 28
partial renaming, 28
renaming, 28, 31
run, 4
submodule, 4

not, 12
nothing, 14

0K, 44

Old syntax, 49
or, 6,9, 12
output, 8

P1, 40

P12, 39
P13, 38
P14, 39

P2, 41

P3, 36
P3bis, 42
P3bisWeak, 43
P3ter, 42
P4, 37

P5, 37

P9, 39
Parallel, 27

and sequence, 27
and variable, 27

53

termination, 27
trap propagation, 27
weak abortion, 27
pause, 14
positive repeat, 17
Preemption, 16
constructiveness, 42
present, 18, 35
present status, 8, 40
Priority
between traps, 25
by nesting, 21
in case list, 18, 21
Procedure
call, 7,11, 15
declaration, 7
definition, 7
reference argument, 7
renaming, 28
scope, 6
type, 7
value argument, 7
Program, 4
acyclic, 38, 40
BUS, 46
causality, 38
constructive, 40
cyclic constructive, 41
deterministic, 36
logical correctness, 39
logically incorrect, 42
non-deterministic, 37
non-reactive, 36
non-sensical, 36
0K, 44
P1, 40
P12, 39
P13, 38
P14, 39

P2, 41 determinism, 36

P3, 36 logical, 39
P3bis, 42 reactivity, 36
P3bisWeak, 43 Sensor, 8, 9
P3ter, 42 ? operator, 12
P4, 37 declaration, 9
P5, 37 renaming, 28
P9, 39 type, 9
PV1, 37 value, 12
PV2, 38 Sequence, 16
reactive, 36 and parallel, 27
STATION, 44 Signal, 8
Pruning, 40 :=, 10
PV1, 37 ? operator, 12
PV2, 38 broadcasting, 27
combination function, 9, 15
Reactivity, 36 combined, 9, 15
Relation, 10 declaration, 8, 10, 49
=>, 10 dependency cycle, 37
#, 10 emit, 15

exclusion, 10

implication, 10
relation, 10
Renaming, 28

expression, 11, 12, 23
incarnation, 42
initial value, 8, 10
initialization, 10

full, 28 input, 8
partial, 28 inputoutput, 8
repeat, 17 interface, 8
return, 8, 29 local, 8
run, 27, 31 output, 8
Scope pure, 8, 15

renaming, 28

lexical, 10, 11
exical, 10, return, 8, 29

of data objects, 6

of signal, 5, 10 sc'ope,15,1%)0
of trap, 25 signal,
single, 9

of variable, 11
Self-justification, 39
Semantics

constructive, 36, 40

status, 8, 12, 40
three-valued status, 40
tick, 8, 12

type, 8, 10

54

value, 12

valued, 8, 15, 49
signal, 8, 10, 35
Signal expression

constructiveness, 43
Statement

[, 27

:=, 10, 11, 14

5, 16

abort, 20, 31, 32

assignment, 14

await, 19, 22

call, 7, 15, 29

every, 22

exec, 7, 29-34

exit, 25

halt, 14

if, 19

loop, 16, 35

nothing, 14

parallel, 27

pause, 14

positive repeat, 17

present, 18, 35

repeat, 17

run, 27, 31

sequence, 16

signal, 8, 10

suspend, 23, 24, 32

sustain, 15

trap, 24

var, 11

weak abort, 20, 25, 26, 31

and trap, 25, 26
STATION, 44
Status
absent, 8, 40
present, 8, 40
unknown, 40

55

String, 4
suspend, 23, 24, 32
suspend immediate, 23
Suspension, 23
delayed, 24
immediate, 24
of task, 32
sustain, 15

Task, 29
abortion, 30-33
declaration, 7
definition, 7
exec, 7
immediate restart, 34
multiple exec, 33
renaming, 28
return, 30
return renaming, 31
return signal, 30
scope, 6
start, 30
stillborn, 35
suspend-resume, 32
suspension, 30, 32, 33

testing for return, 32, 33

type, 7
task, 29
then, 18, 19
Three-valued logic, 40
tick, 8, 14
timeout, 49
Trap, 24
?? operator, 12
concurrent, 26
exit, 25
handler, 25, 26
nesting, 25
priority, 25

propagation, 16
scope, 25
type of, 26
value, 12, 26
valued, 26

trap, 24

true, 6

Type
boolean, 6
declaration, 6
definition, 6
float, 6
integer, 6
of constant, 6
of function, 7
of procedure, 7
of signal, 8, 10
of task, 7
of variable, 11
renaming, 28
scope, 6
string, 6

unknown status, 40
upto, 49

Valued signal
constructiveness, 43

var, 11

Variable, 11, 38
1=, 11, 14
assignment, 14
declaration, 11
initial value, 11
scope, 11
type, 11
unshared, 11, 27

watching, 49
weak abort, 20, 25, 26

56

when, 21
when immediate, 23, 24

